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Abstract —Human modeling is an intrinsic problem in computer animation applica-
tions. Human beings which interact with their environment are often involved in complex
animation scenes. The quality of an animation sequence is directly influenced by the
choice of the human model. This paper focuses on the kinematic aspect of human mod-
eling for walking applications and proposes an algorithmic animation scheme for body-
motion control. The problem of proper human modeling is resolved by using two classes
of articulated robot geometries, namely, the elbow and the dual-elbow, to model the arms
and legs, respectively. The resulting model exploits the properties of the two geometries,
the symmetric nature of the human motion, and the parallelism in its implementation,
in order to minimize the associated computational complexity. A rendering module is
developed to depict the animation sequence on a computer screen. The motion of the
human is shown to be smooth, and to satisfy the imposed joint and contact constraints.
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1 Introduction

Human modeling is an intrinsic problem in computer animation applications. Human
beings which interact with their environment are often involved in complex animation
scenes [1]. The quality of an animation sequence is directly influenced by the choice of
the human model. Human modeling typically refers to the construction of an articulated
structure that assimilates the human body and that is able to perform most of the move-
ments of a real person. Proper human modeling improves the natural aspect of motion
and increases the realism of an animation scene. Although animation scenes involve,
in general, “clothed skeletons”, significant work has been done on animation involving
“naked” articulated structures. Most animation of clothed structures is controlled by an-
imating an underlying skeleton of some description and then completing the final images
with flesh and/or clothes [2].

Several approaches to human modeling for animation have appeared in the recent
years in the literature [3, 4, 5, 6]. The proposed models possess a different number of
degrees-of-freedom (DOF), depending on the application they were designed for; most
of these applications involve human walking. Motion of these models is performed by
employing kinematic and/or dynamic strategies to control the motion parameters; these
approaches however, present high computational load and cannot be executed in real-
time (7, 8, 9]. Walking is the fundamental form of human motion; human models employ
walking to move in their environments and to create the conditions for interaction with
other models or objects. The study of human walking, furthermore, is particularly attrac-
tive because of the existing inherent symmetries and the hierarchical interaction between
the subsystems that compose the human body.

This paper focuses on the kinematic aspect of human modeling for walking appli-
cations. Walking sequences necessitate motion of almost all the elements of the human
body with respect to a world frame or to the body itself. The problem addressed herein is
thus to construct a human model that most precisely reflects the physical and behavioral
characteristics of a real person during walking, and to develop a computationally-efficient
body-motion control strategy.

The present approach resolves the problem of proper human modeling by using robotic
geometries to model the limbs of the human. Specifically, two classes of articulated robot
geometries with six degrees-of-freedom each, namely, the elbow and the dual-elbow, are
employed to model the arms and legs, respectively. Both geometries are anthropomor-
phic; the first three axes in the elbow configuration form the positioning “arm” and the
last three form the orienting “wrist”. The dual-elbow geometry is the kinematic inverse
of the elbow geometry in the sense that the positioning “arm” and the orienting “wrist”
of the latter are interchanged in the kinematic chain. The two geometries have been
proven to be optimal in the sense that they maximize the work volume for a given to-
tal link length [10, 11]; furthermore, they are decoupled and they provide closed-form,
analytic solutions to the inverse kinematics problem [12].




These geometries are combined herein to create a hierarchical system based on an-
thropometric data, and then, to develop a kinematic control scheme for the calculation of
the joint parameters during walking, and which behaves smoothly in the neighborhood of
singular positions. The resulting strategy exploits the properties of the two geometries,
the symmetric nature of the human motion, and the parallelism in its implementation, in
order to minimize the associated computational complexity. This scheme requires only
these parameters that specify the speed of the walk and the number of steps performed.

The motion of the model is planned at the task level, that is, in world (cartesian)
coordinates rather than in joint coordinates; in other words, it is an algorithmic animation
and not a keyframe animation scheme. This choice was made for two reasons. First, it
is more natural, in the sense that real humans decide and coordinate their movements
to interact with their environment in the cartesian level rather than in the joint level;
a human, for example, knows that he/she needs to lift his/her leg by a certain amount
to climb a staircase, instead of calculating the relative displacement of each joint in the
leg separately. Secondly, it is more difficult and expensive to gather data (e.g. from
rotoscopy) for each joint — especially when joints are not simple (e.g. spherical) — and/or
when the motion of the human is not trivial.

The performance of the present algorithm has been tested and scrutinized. A ren-
dering module to depict the animation sequence in the computer has been developed.
A human model based on ellipsoidal limbs was adopted, the number of which depends
on the degrees-of-freedom in the kinematic representation, while their shape reflects the
dimensions according to anthropometric data. The resulting figurines are described by
mathematical equations to simplify rendering procedures; the algorithm used for their
production presents acceptable speed and representation quality. The motion of the hu-
man is smooth, and satisfies the imposed joint constraints and the floor constraints (that
is, there is no foot penetration on the floor). Hidden surface removal and shading are
accomplished with ray tracing.

This paper is organized as follows. In Section 2, the ideal elbow and dual-elbow
robotic geometries are presented. In Section 3, the realistic versions of the ideal robotic
geometries are employed to construct the integrated human model. A complete kinematic
study of these geometries is performed herein. In Section 4, the problems of trajectory
planning and of the motions of the distinct subsystems are addressed in turn. Then, in
Section 5 a paradigm of motion of the human model reveals the efficiency of the current
implementation. Finally, in Section 6, the contributions of this paper are summarized
and areas for future research are highlighted.




2 Ideal Articulated Geometries

In this section, the ideal elbow and dual-elbow articulated robot geometries are pre-
sented. These geometries are employed in this paper to model the limbs of the human
model. Specifically, the elbow geometry is used to model the human arms, and the dual-
elbow geometry is used to model the legs. In the sequel, the two geometries are described
in the robotics context.

2.1 The Elbow Geometry

Elbow manipulators are general-purpose anthropomorphic devices consisting of six
rotational joints. The first three joints constitute the robotic “arm”, while the remaining
three form the robotic “wrist” on which the end-effector is attached. The arm is pri-
marily responsible for positioning the end-effector in space, while the wrist is primarily
responsible for orienting it. The following formal definition of an ideal elbow manipulator
is an edited version of the one introduced by Paden [13].

Definition 2.1.1 A robot manipulator with siz rotational joints is an elbow manipulator,
if there ezists a configuration q = (61,0,,...,06)T at which (Figure 1):

® zo and z, intersect perpendicularly at point B;

® z, is parallel to z,;

® z3, z, and Zs are mutually orthogonal and co-intersect at point H;

e z, is perpendicular to the line segment BH; and

® z, is the perpendicular bisector of BH.

In the above definition, z; (¢ = 1,...,6) denote the axes of motion (rotation), while 6;
(:=1,...,6) are the joint displacements. From the definition of the elbow manipulator
it can be inferred that the length L, of the second link (the upper arm), and the length
L, of the third link (the forearm), are both equal to L. Furthermore, the axes z3,z4 and
zs form a spherical joint. The ideal elbow geometry is therefore decoupled. The tool axis
zg in an ideal elbow geometry coincides with axis zs, with the origin of the end-effector
coordinate frame located at a distance L3(= L;) from the center of the spherical wrist.
The axis arrangement in an ideal elbow geometry provides the robot with the capability
of a base rotation about zg, a shoulder rotation about z;, an elbow rotation about z,,
and wrist rotations about z3, z4, and zs.

The assignment of coordinate frames to an ideal elbow manipulator is performed using
the Denavit-Hartenberg convention. The Denavit-Hartenberg parameters of the ideal
elbow geometry are summarized in Table 1. It is observed that in the elbow manipulator
geometry the twist angles are either 0° or 90° for each link, and that each link has either
a zero length d; or a zero joint offset r;.
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Figure 1: Definition of the Ideal Elbow Manipulator Geometry.
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Table 1: Denavit-Hartenberg Parameters for an Ideal Elbow Manipulator.




The inverse kinematics problem for the ideal elbow geometry consists of computing
the joint coordinates (6, 0,, 03, 04, 05, 65) required to place the end-effector in a desired
pose in space. For the elbow manipulator geometry, motion of any of the intersecting
joints 23, 24, and 25, does not affect the position of the co-intersection point H, and
therefore, the positioning task is decoupled. The inverse kinematics problem for the
elbow manipulator, therefore, is demoted to the problem of solving for the three joint
coordinates 6;, 6, and 03 required to position the co-intersection point. Then, these
values are used in combination with the task description, to formulate a lower-order
system where the only unknowns are the last three joint coordinates, 6y, 65, and 6g; for
this system closed-form solutions also exist. The complete inverse kinematics solution
for an ideal elbow manipulator is presented analytically in [14].

For a certain position of the hand, the elbow can have two configurations; elbow up,
where the elbow’s position is above the line BH joining the shoulder and the wrist; and
elbow down, where the elbow’s position is below that line. Furthermore, depending upon
the value of the joint angle 6, the manipulator may represent a left arm, or a right arm
configuration. Finally, depending upon the value of the joint angle 5, the wrist can be
in a no-flip wrist configuration, or a flip wrist configuration. Thus, for a desired pose of
the end-effector, there exist up to eight different joint displacements sets to achieve it.
In a real-time application, the control computer selects at each time-instant the solution
set that is the nearest neighbor to the solution at the previous time-instant.

The singularities of the manipulator represent the boundaries between the solutions
to the inverse kinematics problem [15, 16]. At a singularity, infinite joint velocities are
required to maintain a finite end-effector velocity; in effect, the manipulator is unable to
move along (or around) certain directions [17]. The existence of singular positions inside
the robot workspace is an inherent problem for task planning and robot control [18, 19].

For an ideal elbow manipulator, there exist three singularities. At the first singular
configuration, sin #3 = 0 and the robotic arm is either fully contracted or fully extended.
At the second singularity, cos 6, + cos(f2 + 63) = 0 and the intersection point H of the
axes 3, Z4, and zs lies on the 7, axis and thus a rotation about this axis is compensated
by the motion of the spherical wrist; one degree-of-freedom is then lost. Finally, at
the third singular configuration, sinf; = 0 and axes z3 and zs are aligned; 6, and 6
describe the same rotation; one degree-of-freedom is thus lost. It should be observed
that the manipulator singularities consist of exactly the arm singularities and the wrist
singularities; that is, the positional ability of the arm is not affected by the loss of an
orientational degree-of-freedom; similarly, the orientational ability of the wrist is not
affected by the loss of a positional degree-of-freedom.




2.2 The Dual-Elbow Geometry

Dual-elbow manipulators are articulated robots consisting of six rotational joints. The
ideal dual-elbow geometry is the kinematic inverse of the ideal elbow geometry in the
sense that the positioning “arm” and the orienting “wrist” of the latter are interchanged
in the kinematic chain. The following formal definition of an ideal dual-elbow manipulator
is an edited version of the one introduced by Paden [13].

Definition 2.2.1 A robot manipulator with siz rotational joints is a dual-elbow manipulator,
if there ezists a configuration q = (04,0,,...,06)7 at which (Figure 2):

® 7o, Z1 and 2z, are mutually orthogonal and co-intersect at point B;

® z4 and zs intersect perpendicularly at point H:

® z3 is parallel to z4;

e z4 1s perpendicular to the line segment BH; and

e z3 is the perpendicular bisector of BH.

From the definition of the dual-elbow geometry it can be inferred that the length
Ly of the third link the length L, of the fourth link are both equal to L. Furthermore,
the axes zo,z; and z, form a spherical joint. The ideal dual-elbow geometry is therefore
decoupled. The tool axis z¢ coincides with axis zs, with the origin of the end-effector
coordinate frame located at a distance L3 (equal to the tool length L;) from the center of
the spherical joint. The axis arrangement in the ideal dual-elbow geometry provides the
robot with the capability of a spherical motion about the base joint axes zo, z; and 2z,
a rotation about z3, and forward rotations about z, and zs.

The assignment of coordinate frames to an ideal dual-elbow manipulator follows the
Denavit-Hartenberg convention. The Denavit-Hartenberg parameters of the dual-elbow
geometry are summarized in Table 2. It is observed that, as in the elbow manipulator
geometry, the twist angles are either 0° or 90° for each link, and that each link has either
a zero length d; or a zero joint offset r;.

For the dual-elbow manipulator geometry, motion of any of the intersecting joints zg,
21, and 2z, does not affect the position of the co-intersection point B as seen from the end-
effector. The inverse kinematics problem for the dual-elbow manipulator, therefore, is
demoted to the problem of solving for the three joint coordinates 6y, 65, and 65 required to
position the co-intersection point B, when the task is described in the end-effector frame.
Then, these values are used in combination with the task description, to formulate a
lower-order system where the only unknowns are the first three joint coordinates; for this
system closed-form solutions also exist. The complete inverse kinematics solution for an
ideal dual-elbow manipulator is presented analytically in [14].




22 z3 Z4

Figure 2: Definition of the Ideal Dual-Elbow Manipulator Geometry.
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Table 2: Denavit-Hartenberg Parameters for an Ideal Dual-Elbow Manipulator.




For a certain position of the end-effector, the dual-elbow can have two configurations;
elbow up, where the origin of the third frame is above the line segment BH joining the
shoulder and the wrist; and elbow down, where the origin of the third frame is below
that line. Furthermore, depending upon the value of the joint angle 6,, the manipulator
may represent a left hand, or a right hand configuration. Finally, depending upon the
value of the joint angle f¢ the wrist can be in a no-flip wrist configuration, or a flip wrist
configuration. Thus, for a desired position of the end-effector, there exist up to eight
different joint displacements sets to achieve it. In a real-time application, the control
computer selects at each time-instant the solution set that is the nearest neighbor to the
solution at the previous time-instant.

The dual-elbow manipulator has a decoupled robot geometry and thus guarantees
singularity decoupling. The manipulator singularities, therefore, consist of exactly the
positional singularities and the orientational singularities. Since there are eight distinct
solutions, in general, to the inverse kinematics problem, there exist three robotic singu-
larities. At the first singular configuration, sin 64 = 0 and the robotic arm is either fully
contracted or fully extended. At the second singularity, cos s + cos(f4 + 65) = 0 and the
intersection point B of the axes zg, z;, and z,, lies on the z; axis and rotation about this
axis is compensated by the motion of the spherical joint; one degree-of-freedom is then
lost. Finally, at the third singularity, sin 6, = 0 and axes z, and z, are aligned; 8, and
05 describe the same rotation; one degree-of-freedom is thus lost.

2.3 Realistic Robot Geometries

The formal definitions of the ideal elbow and dual-elbow geometries presented herein,
have shown that the one constitutes the inverse kinematic mapping of the other, in
the sense that the “arm” and the “wrist” are interchanged in the kinematic chain [12].
Indeed, the kinematic parameters of the i-th link of the one are identical to the kinematic
parameters of the (6 — z)-th link of the other, for : = 1,...,5; the absolute values of the
twist angles are either 0° or 90°; each link has either a zero length or a zero joint offset;
the forearm and the upper arm have the same length; and the joints are assumed to have
complete rotational freedom [11, 20].

Realistic robot geometries arise because of designed deviations from the ideal case and
because of unavoidable manufacturing errors [21, 22]. The realistic geometries employed
in this paper are characterized by the following deviations:

e Unequal upper arm and forearm lengths for both geometries, and

e Presence of joint limits at every joint for both geometries.

These constraints are imposed in order to model the limbs of the human model as accu-
rately as possible . In this context, the link lengths and the joint limits are derived from
anthropometric data reflecting the body structure.




3 The Human Model for Walking

In this section, the skeleton of the human model is described and the subsystems
that compose it are highlighted. Then, the realistic elbow and dual-elbow geometries are
incorporated in the human model and their specific characteristics are outlined.

3.1 The Skeleton of the Human Model

The skeleton of the human model consists of six distinct subsystems, namely, the
right and left legs (denoted by {LF} and {L}, respectively), the right and left arms
(denoted by { AR} and { AL}, respectively), the main body (which includes the thorax
and the clavicles and is denoted by {B}), and the head (which includes the neck and is
denoted by {H}). These systems are depicted in Figure 3.

The head subsystem consists of a spherical joint able of turning the head left or right,
and up or down, and also to bend it to the left or right (Figure 4). The head is connected
to the main body with the neck link. The four limbs subsystems consist of six joints each.
The legs are connected between them by the waist link, while the arms are connected
between them by the back link. The main body subsystem consists of three joints that
move the vertebrae links. These enable the rotation of the waist link about Zz,, and
about an axis parallel to ®yo, and the back link about 5zy. The main body subsystem
coincides the human model system. The motion of the human model in space can be
specified as a motion of the main body subsystem in space; furthermore, any motion of
this system causes the other subsystems to move as well.

3.2 The Human Legs Model

The legs of the humanoid are modeled upon the realistic dual-elbow geometry; that is,
there exist joint limits reflecting limited rotational capabilities of the human leg joints,
while the lengths L; and L, are specified from anthropometric data. The coordinate
frames for the legs are depicted in Figure 5a.

The £z, axis points vertically upwards along the feet-head direction; rotation about
this axis corresponds to a hip flerion. Axis £x, points towards the direction of motion and
is always parallel to the world Wx, — "Wy, plane for human walking applications. The £y,
axis completes the right-hand frame. Typically, in a walking sequence, the orientation of
the {£®} and {£F} frames relative to the body and the world systems remains constant;
changes in the direction of motion result from changes in the orientation of the body
system. Rotation about “z; corresponds to knee bending, while rotations about £z,, and
“zs correspond to ankle motions. The origin of the foot coordinate system (equivalent
to the end-effector frame) coincides with the foot tip, while the £zg axis is perpendicular
to the foot and points away from the floor and the £xg axis lies along the foot direction
and points towards the toes.
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Figure 3: Definition of the Human Model Skeleton.
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Figure 4: Definition of the Main Body and Head Coordinate Systems.
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Figure 5: (a) Definition of the Left and Right Legs Coordinate Systems. (b) The Range
of Motion of the Leg Joints.
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The range of motion of each joint in the legs model is depicted in Figure 5b, where the
superscripts R and L denote the joint variables for the right and left legs, respectively.
White dots in this figure indicate the values of the joint variables at the zero position,
which occurs when the human model is standing (not walking). The direction of the
arrows indicates how the same joint variable in the left and right legs varies in order to
produce the same leg motion. The absolute amount of freedom for each joint is identical
for both legs. The joint variable 047, for example, varies from 0° to —140° while 6,
varies from 0° to 140° to produce the same amount of flexion at the knees.

The joint limits are employed to limit the solution space in the computation of
the inverse kinematics solution for each leg at a desired pose. For example, since
—140° < 6} < 0°(0° < 6L < 140°) for the right (left) leg, sin 6% < 0 (sin % > 0)
always; otherwise the leg will be forced to assume an abnormal position. Similarly, it
follows that always sin 8% < 0 (sin#% > 0) and that cos8F > 0 (cos6% < 0).

R, Z
) 0 L* %o
R R
00 0 p
z, z,,X, z, : z,,Xo
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(a) (b)
Figure 6: The Singular Configurations of the Legs Model.
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It is observed from Figure 5a that the legs exhibit a symmetry along 5z, of the body
system. In a uniform walking sequence each leg assumes the same poses with respect to
the body system periodically; this period is equal to half the walking cycle, that is, the
time required for a single step sequence to be completed, and corresponds to a phase shift
of /2. Thus, only the inverse kinematics solution of one leg needs to be computed. The
solution for the other leg can result by appropriate shifting of the obtained joint profile.
This approach reduces the computational complexity to the half.

The first singular position for the human legs occurs when sin 6, = 0; a singularity
may occur only when 6, = 0° since 0° < | 64 | < 140°. At this configuration, the
human leg is fully extended. The second singularity takes place when the intersection
point of the axes zo, z;, and z,, lies on the zs axis; as a result, there exists an infinite
number of solutions for 6. Finally, when axes zo and z, are aligned, 6, and 65 describe
the same rotation and cannot be computed separately; one degree-of-freedom is thus
lost. However, the joint limits in the motion about z, dictate that 70° < | 6, | < 130°;
therefore, this orientational singularity never occurs because of the joint limits. The
singular configurations of the legs model are depicted in Figure 6.

3.3 The Human Arms Model

The human arms are modeled upon the realistic elbow geometry, that is, each joint
exhibits limited rotational capabilities and the lengths L; and L, of the forearm and the
upper arm, respectively, are not identical. The joint constraints reflect the limitations
in the motion of the human arm, while the lengths L; and L, are determined from
anthropometric data. The coordinate frames for the arms are depicted in Figure 7a.

The 4z, axis for both arms points towards the direction of motion; this vector is
always parallel to the "Wx, — Wy, plane of the world coordinate system in walking ap-
plications, where no vertebrae flexion is present. Rotation about this axis corresponds
to a shoulder flezion. The #x, axis point upwards, along the feet-head direction and is
always parallel to the "z, axis of the world coordinate system in walking applications.
The 4y, axis completes the right hand frame. Typically, in a straight-line walking se-
quence, the orientation of {A”} and {AL} relative to the body and the world systems
remains constant; changes in the direction of motion result from changes in the orienta-
tion of the body system. Rotations about axes #z,, and “z,, correspond to shoulder and
elbow rotations, respectively. Rotations about “z3, “z, and “z5 correspond to a wrist
yaw, pitch, and roll, respectively. The #zg axis lies along the fingers towards the reach
direction and the “x¢ axis is perpendicular to the hand and points outwards.

The range of motion for each joint of the human arm model is depicted in Figure 7b,
where ¢; = 6;, (¢ = 1,2,...,6) denote the joint variables, and the superscripts R and
L distinguish between the right and left arms, respectively. White dots in this figure
indicate the values of the joint variables at the zero position, which occurs when the
human model is standing (not walking). The direction of the arrows indicates how the
same joint variable in the left and right arms varies in order to produce the same arm
motion.
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Figure 7: (a) Definition of the Left and Right Arms Coordinate Systems. (b) The Range

of Motion of the Arm Joints.
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Figure 8: The Singular Configurations of the Arms Model.

The joint limits are employed to limit the solution space in the computation of
the inverse kinematics solution for each arm at a desired pose. For example, since
0° < 6F < 150° (—150° < 6L < 0°) for the right (left) arm, sin6® > 0
(sin @) < 0) always; otherwise the arm will be forced to assume an abnormal position.
Similarly, it follows that always sin % > 0 (sin oL < o).

It is observed from Figure 7a that the left hand exhibits a symmetry to the right
hand along 5z, of the body system. In a uniform walking sequence each arm assumes
the same positions periodically; this period is equal to half the walking cycle, that is,
the time required for a single step sequence to be completed, and corresponds to a phase
shift of 7/2. The symmetry in the hands motion allows for the computation of the
inverse kinematics solution of only one arm. The solution for the other arm can be
obtained by appropriate shifting of the obtained joint profile. This approach reduces the
computational complexity to the half.
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The first singular configuration occurs when sin ;3 = 0; since 0° <|6s3] < 150° a
singularity may occur only when 63 = 0°. At this configuration the human arm is fully
extended. The second singularity occurs when the intersection point of the axes z3, z,,
and z5 lies on the z, axis; one degree-of-freedom is then lost. Finally, when axes z; and
25 are aligned, 6, and fg describe the same rotation; one degree-of-freedom is thus lost.
However, the joint limits in the motion about z; dictate that 20° < | 6s | < 150°;
therefore, this orientational singularity never occurs because of the joint limits. The
singular configurations of the arms model are depicted in Figure 8.

4 Motion of the Human Model

In this section, the problem of moving the human model in space is addressed. First,
the motion profiles for the arms and legs are described; then, the trajectory planning
strategy is outlined, and finally, the computational complexity of the proposed approach
is assessed.

4.1 The Walking Sequence

At all times in a walking sequence, at least one foot is in contact with the floor;
during a brief phase, both feet are in contact with the floor. As walking is a cyclic
activity, only the portion between two successive contacts of the heel of the same leg
with the floor needs to be studied. The model employed herein utilizes the spatial and
temporal characteristics of human walking to produce the joint parameters of the limbs.

The motion of the leg is comprised of four phases: The first phase describes the
motion from the heel strike (HS) until the entire foot is in contact with the ground.
During the second phase, the foot remains in full contact with the floor, while the other
leg moves forward; the stance leg then carries the entire body weight. At the beginning
of the third part, the heel loses contact with the ground, while at its end the toe leaves
the floor; at the middle of this phase the other heel strikes the ground. During the fourth
part, the swinging leg advances by a step length. Apart of the toes, the hip also follows a
specific pattern of motion. The equations used to model this motion have been obtained
from [23]. Once the joint coordinates for one leg have been computed these parameters
can be determined for the other leg as well by a simple phase shift of = /2. The motion
of the legs is depicted in Figure 9.

The motion of each arm during walking follows the motion of the opposite leg in
the sense that when the right leg moves forward, the left arm also moves forward, and
inversely. The torque applied to the back link is thus equal and opposite to the torque
applied to the waist so that the main body does not rotate. Furthermore, each arm is
moving opposite to the other arm so that the torque about the back link is zero.

16




Figure 9: Motion of the Legs During Walking.

zG
Figure 10: Motion of the Arms During Walking.
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The motion profile of the arm with respect to the origin of the arm coordinate frame
is depicted in Figure 10. The hand motion profile is completed in two phases: during
the first phase the arm follows a circular arc centered at the shoulder with radius R,
(Li + Ly < Ry < Ly + Ly + L3), while during the second phase, the hand follows a
circular arc centered at the middle of the upper arm with radius R; (L,/2+ L, < Ry <
L1/2 + Ly + L3). During the first part of the motion, the arm is almost stretched and
the angle of the circular arc is at most 30°; during the second part, the elbow bends
slightly and the angle of the circular arc typically varies from 30° to 45°. Once the joint
coordinates for one arm have been computed these parameters can be determined for the
other arm as well by a simple phase shift of 7 /2.

The motion profile of the limbs with respect to {B}, for straight-line paths, or paths
composed of straight line segments, is a function of the walking velocity only, for given
body dimensions.

4.2 Trajectory Planning

The human model follows a predefined trajectory with respect to the constant world
coordinate frame {W}. This trajectory is specified as motion of the body coordinate
frame {B}; the motions of all other frames are performed with respect to this frame. A
change in the direction of motion corresponds to a change in the orientation of {B}, and
inversely, changes in the direction of {B} result to changes in the walking direction of
the human model. The head coordinate system {#} is assumed to follow these changes.
The velocity of {B} with respect to {W} is the only parameter that needs to be specified
for every straight line segment. Motion along more complex paths can also be simulated

assuming that these are composed of many short linear segments; these segments can be
designed to be arbitrarily small.

To compute the necessary joint displacements that generate a specific motion of each
limb, the motion profile is divided into N segments (N usually varies form 30 to 100 for
each step). Two approaches can then be followed: either the inverse kinematics solution
is computed for each time instant or a kinematic control scheme is employed. The
inverse kinematics approach, in general, requires more computations. Nevertheless, for
the decoupled geometries of the human model, an analytic, closed-form solution always
exists; furthermore, only one set of the eight possible needs to be computed.

The kinematic control strategy on the other hand may be quite expensive com-
putationally and prone to computational errors since during walking the limbs move
very close to singularities. This problem has been resolved by employing a singularity-
robust resolved-motion rate kinematic control algorithm in the neighborhood of singu-
larities [11, 24]. This approach always provides feasible solutions and guarantees smooth
motion of the limbs at the neighborhood of singular positions. It has been shown that
the computational cost associated with this control scheme is considerably lower than
that of existing control algorithms because it exploits the decoupled nature of the arms
and legs geometries.
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FUNCTION a (m]|t

Arm Inverse Kinematics 31|45 |26

Leg Inverse Kinematics 32|38 (29
Singularity-Robust Arm Jacobian || 28 | 66 | 12
Singularity-Robust Leg Jacobian || 28 | 66 | 12
Inverse Arm Jacobian 12 (24|11
Inverse Leg Jacobian 12 124 |11

Table 3: Computational Load at Every Time Instant.

4.3 Computational Complexity

The computational complexity at every time instant is summarized in Table 3 when
the inverse kinematics are computed and when a kinematic control strategy is employed.
These results indicate that it is preferable to employ the inverse kinematics strategy for
walking applications. This is not, in general, the case in robotic applications. The motion
of the limbs, nevertheless, close to the singularities dictates the use of singularity-robust
inverse Jacobians which, although stable, are more computationally expensive.

5 Example

In this section, the behavior of the presented model is illustrated through an exam-
ple. Specifically, the human model is ordered to walk in a straight line. The present
application employs ray tracing to graphically represent the motion of the human model
in the scene. The links of the human model are represented by ellipsoids, the number
of which depends on the degrees-of-freedom in the kinematic representation, while their
shape reflects the dimensions according to anthropometric data. Specifically, the model
is composed of sixteen ellipsoids, that is, three for each limb, one for the waist, one for
the chest, one for the back, and one for the head [25]. '

The following assumptions have been made:

e Only one light source is defined and used. Currently, the light source coincides with
the camera. The eye can thus perceive only these objects which are illuminated.

¢ Both the virtual camera and the light source are modeled upon the pinhole camera;
that is, they are dimensionless points [26].

e The objects in the scene are assumed to be perfect surfaces, in the sense that they
scatter light equally in all directions.

¢ The implemented ray tracer calculates only first-order rays, by employing the Lam-
bertian diffuse reflectance model.

¢ No antialiasing methods are used; only one ray is thus cast through each pixel.
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Figure 11: Human Model Motion Viewed at an Angle of 45°.

20




Figure 12: Human Model Motion Viewed from the Side.
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The poses (position and orientation) of the ellipsoids are calculated by the general an- -

imation model. To produce an animating sequence, the pose of each ellipsoid is computed
and input to the ray tracing program. Hidden surface removal and shading are accom-
plished with ray tracing. The motion of the human model is smooth, and satisfies the
imposed joint constraints and the floor constraints (that is, there is no foot penetration
on the floor). The complete algorithm for the human model motion is implemented in the
C++ programming language [27]. Figures 11, and 12 depict two different perspectives
of the motion from different viewing angles.

6 Conclusions

In this paper, the problem of kinematic human modeling has been investigated. A
kinematic model that employs two classes of optimal articulated geometries to model
the limbs, has been developed. The decoupling properties of the elbow and dual-elbow
geometries have been utilized to create closed-form, analytic inverse kinematic solutions.
Furthermore, the symmetry in the motion of the two pairs of limbs during walking has
been exploited to reduce the computational time in half. An integrated ray tracing and
rendering algorithm has been created to accompany the main algorithm and to present
realistic motion in screen.

In order to extend the contributions of this investigation, the following research di-
rections are suggested:

e Further research on the study of human motion.

Study of different types of motion of the human model in space.
e Customization and classification of motion patterns.

e Investigation of motion planning strategies of the human model in space and path
optimization for complex environments.

Development of a human model which accounts for the dynamic interactions be-
tween the distinct subsystems that compose it.

Continuing research along these lines will reveal the full potential of the optimal

geometries in human modeling, and accelerate their utilization in computer animation
applications.
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